STATISTICAL CONSIDERATIONS IN EDUCATIONAL RESEARCH

Dalia Meisha, DDS, MPH, DScD
dmeisha@vcom.vt.edu
Outline

Before
- Sample Size Calculation
- Research Design
 - Objectives → Study Outcome(s)
 - Research Variables
 - Sampling
 - Reliability
- Statistical Analysis Plan

During
- Data Coding/ Data Collection Forms

After
- Statistical Analysis
VCOM Edu. Research

- Evaluation of E-Mail Board Review Questions by Osteopathic Medical Students – The Weakly Bored
- The Effect of Physical Touch on Patient Satisfaction in a Standardized Patient Model
- Methods of Delivering Public Health Messages to Children in Underserved Areas of Honduras
- A Comparison of Medical Student versus Preceptor Evaluation of Clinical Presentation Skills
- The Virtual Standardized Patient: an Effective Modality for Educating Preclinical Medical Student Presentation Skills. A Comparative Item Analysis of Live Standardized Patients versus Virtual Patients
A Comparative Item Analysis of Live Standardized Patients versus Virtual Patients

Objective: to perform comparative analysis of the quality of the case presentation based on an item analysis of live (Standardized Patients) SP versus VP (virtual patients).

Sample: A total of 340 students

Outcome: Evaluation of students’ performance (4 areas of the case presentation: history, physical assessment and laboratory evaluation, differential, and plan)

Predictor: live SP versus virtual patients

Results: Performance on the virtual case presentations and live patients were found to be comparable (percentage of correct answers was 77.3% and 76.8% respectively, p = 0.9).
Outline

Before
- Sample Size Calculation
- Research Design
 - Objectives → Study Outcome(s)
 - Research Variables
 - Sampling
 - Reliability
- Statistical Analysis Plan

During
- Data Collection Forms

After
- Statistical Analysis
Why Sample Size Calculation?

- **Scientifically:**
 - Too small sample size → study will lack the precision
 - Too small sample size → we may mistakenly conclude no difference (insufficient power, Type II error)

- **Ethically:**
 - Too small sample size → exposed subjects to testing without the capability to advance knowledge
 - Too big sample size → potential to expose unnecessarily large number of subjects (potential harm)

- **Economically:**
 - Too small sample size → waste resources
 - Too big sample size → waste resources
Sample Size Calculation

• Desired level of significance (α)
• Desired power
• Statistics that will be used for analysis
• Whether the test would be one or two-tailed
• Allocation ratio
• Size of difference of main outcome and SD: Literature or Pilot study
• Drop out?
Sample Size Calculation

• Desired level of significance (α): 0.05
• Desired power: 80%
• Statistics that will be used for analysis: T-test comparing 2 means
• 2-tailed
• Allocation ratio: 1:1
• Size of difference (94.4, 89.7), SD (6.9, 14.6)
Power Analysis in G*Power 3.1.7

Central and noncentral distributions

Protocol of power analyses

- Critical t = 1.9728

Test family
- t tests

Statistical test
- Means: Difference between two independent means (two groups)

Type of power analysis
- A priori: Compute required sample size - given α, power, and effect size

Input Parameters
- Tail(s): Two
- Determine =>
 - Effect size d: 0.4116082
 - α err prob: 0.05
 - Power (1-β err prob): 0.8
 - Allocation ratio N2/N1: 1

Output Parameters
- Noncentrality parameter δ: 2.8218436
- Critical t: 1.9728001
- Df: 186
- Sample size group 1: 94
- Sample size group 2: 94
- Total sample size: 188
- Actual power: 0.8015817

Additional parameters
- n1 = n2
- Mean group 1: 94.4
- Mean group 2: 89.7
- SD σ within each group: 6.9
- SD σ group 1: 6.9
- SD σ group 2: 14.6

Buttons
- Calculate and transfer to main window
- X-Y plot for a range of values
"A sample size of 94 in each group will be sufficient to detect a difference of 4.7 points on students performance, assuming standard deviation of 6.9 and 14.6 points, a power of 80%, and a significance level of 5%.

Option: This number has been increased to 104 per group (total of 208), to account for a predicted drop-out from vcom of around of 10%"
Factors affecting Sample Size Calculation:

• \(\uparrow \) power \(\Rightarrow \) sample size \(\uparrow \)

• \(\downarrow \) variability \(\Rightarrow \) sample size \(\downarrow \)

• \(\uparrow \) Size of differences \(\Rightarrow \) sample size \(\downarrow \)
Pitfalls in Sample Size Calculation

• A sample size of 100 is proposed parallel to a published similar study that recruited 100 subjects & found highly significant results.
• Sample size calculation is not feasible because there is no available information.
 • Do pilot study
• Number was decided based on available subjects
 • Multi-center study
Outline

Before
- Sample Size Calculation
- Research Design
 - RQs/ Objectives → Study Outcome(s)
 - Research Variables
 - Sampling
 - Reliability
- Statistical Analysis Plan

During
- Data Collection Forms

After
- Statistical Analysis
Research Design

Research Question: Is the outcome of the students’ case presentation different with live SP versus virtual patients?

Hypothesis: Students Performance with live SP=with VP

Comparison/ control: Live SP vs Virtual Patients

Outcome (Dependent): Students’” performance

Predictor (Independent): Live SP vs VP
Research Variables

<table>
<thead>
<tr>
<th>Outcome (Dependent)</th>
<th>Independent Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Influenced by manipulated variable</td>
<td>• Intervention</td>
</tr>
<tr>
<td>• Define the outcome measure</td>
<td>• Demographics</td>
</tr>
<tr>
<td>• Measureable</td>
<td>• Other possible confounders</td>
</tr>
</tbody>
</table>

- Outcome (Dependent): Influenced by manipulated variable, Define the outcome measure, Measureable
- Independent Variables: Intervention, Demographics, Other possible confounders
Research Variables

Continuous

- Students grade
- Age in years

Categorical

- Students letter grade (A, B, C, F)
- Age in categories
Sampling

- Simple Random (randomization table)
- Systematic
- Stratified
Reliability

- Calibration
- Inter-Rater Reliability: with other faculty
- Intra-Rater Reliability: same faculty at another occasion

http://www.socialresearchmethods.net/kb/reltypes.php
Outline

Before
- Sample Size Calculation
- Research Design
 - RQs/Objectives \rightarrow Study Outcome(s)
 - Research Variables
 - Sampling
 - Reliability
- **Statistical Analysis Plan**

During
- Data Collection Forms

After
- Statistical Analysis
To convince the reviewers that you can analyze the data

- Shows awareness of statistical aspects and capability to address issues is important
Outline

Before
- Sample Size Calculation
- Research Design
- RQs/ Objectives → Study Outcome(s)
- Research Variables
- Sampling
- Reliability
- Statistical Analysis Plan

During
- Data Coding/ Data Collection Forms

After
- Statistical Analysis
Data Coding

- **What is Data Coding?**
 “The process by which verbal data are converted into variables and categories of variables using numbers, so that the data can be entered into computers for analysis.”

Variables:
- Gender
 - Male = 1
 - Female = 2

VCOM Class
- 2016 = 1
- 2017 = 2
- 2018 = 3

Bourque, Linda B. "Coding." In The Sage Encyclopedia of Social Science Research Methods, 2004
Data Collection Form

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trial Number</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
</tr>
<tr>
<td></td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
</tr>
<tr>
<td></td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
</tr>
<tr>
<td>2</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
</tr>
<tr>
<td>3</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
</tr>
<tr>
<td>4</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
</tr>
<tr>
<td>5</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
</tr>
<tr>
<td>6</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
</tr>
<tr>
<td>7</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
</tr>
<tr>
<td>8</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
</tr>
<tr>
<td>9</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
</tr>
<tr>
<td>10</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
</tr>
<tr>
<td>11</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
</tr>
<tr>
<td>12</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
</tr>
<tr>
<td>13</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
<td>(2) Somewhat confident</td>
<td>(3) Neutral</td>
<td>(4) Somewhat unconfident</td>
<td>(5) Very unconfident</td>
<td>(1) Very confident</td>
</tr>
</tbody>
</table>

- **Do you believe training in mobile dental clinics improved your cultural competency skills as general dentist?**

 - **(1) Yes**
 - **(2) No**
 - **(3) Somewhat**
Data Collection Form
Outline

Before
- Sample Size Calculation
- Research Design
 - RQs/ Objectives → Study Outcome(s)
 - Research Variables
 - Sampling
 - Reliability
 - Statistical Analysis Plan

During
- Data Coding/ Data Collection Forms

After
- Statistical Analysis
Statistical significance (p-value)

• Relates to the probability of rejecting the null hypothesis and accepting the alternative hypothesis

• Significance is shown at \(\alpha 0.05 \)
 • \(p \leq 0.05 \): results occurring are due to chance are 5% or less
Type I and II errors

Type I error (α):
- Rejected the null hypothesis when it is true
- Concluded there is a difference between the means of the two groups when, in fact, there is not a difference

Type II error (β):
- Accepted the null hypothesis when it is false
- Concluded there is no difference between the means of the two groups when in fact there is a real difference

Type I and II errors

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>No effect</th>
<th>Has an effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0</td>
<td>Type I error</td>
<td>✓</td>
</tr>
<tr>
<td>Fail to reject H_0</td>
<td>✓</td>
<td>Type II error</td>
</tr>
</tbody>
</table>
How to determine statistical test?

- What are you interested in?
- Is your dependent variable Continuous or Categorical
- Data: Parametric versus non-Parametric
How to determine statistical test?

<table>
<thead>
<tr>
<th>Goal</th>
<th>Type of Data</th>
<th>Statistical Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe one group</td>
<td>Measurement</td>
<td>t test or Wilcoxon test or Chi-square test</td>
</tr>
<tr>
<td>Compare one group to a hypothetical value</td>
<td>Rank, Score, or Measurement</td>
<td>Chi-square test or Binomial test</td>
</tr>
<tr>
<td>Compare two unpaired groups</td>
<td>Binomial (two possible outcomes)</td>
<td>Log-rank test or Mantel-Haenszel</td>
</tr>
<tr>
<td>Compare two paired groups</td>
<td>Survival Time</td>
<td>Kaplan-Meier survival curve</td>
</tr>
<tr>
<td>Compare three or more unmatch groups</td>
<td>t test</td>
<td>MCNEMAR'S TEST</td>
</tr>
<tr>
<td>Compare three or more matched groups</td>
<td>Repeated-measures ANOVA</td>
<td>Friedman test</td>
</tr>
<tr>
<td>Quantify association between two variables</td>
<td>Pearson correlation</td>
<td>Cochran's Q</td>
</tr>
<tr>
<td>Predict value from another measured variable</td>
<td>Simple linear regression or Nonlinear regression</td>
<td>Simple logistic regression</td>
</tr>
<tr>
<td>Predict value from several measured or binomial variables</td>
<td>Multiple linear regression or Multiple nonlinear regression</td>
<td>Cox proportional hazard regression</td>
</tr>
</tbody>
</table>
Common Mistakes

- Unclear Subject Recruitment
- Sample Size
- Information about Group Comparison
- Appropriate Statistical Methodology (example: Comparing pre- and post-study Results)
- Reporting Statistical Significance
- Justification for Research
- Distribution of a Variable
- Unclear Research Methods
- Trimming and Cooking Data
- Using Power Analysis to Determine the Appropriate Number of Subjects
THANK YOU